
Talos Linux
Provision nodes
How to scale down a Talos cluster
Node setup with Nvidia GPU
Switch CNI

Provision nodes
After creating the nodes in Proxmox run the following commands. In this example, I have 3 API
controllers and 3 worker nodes. Each controller will have an etcd database.

Edit the worker.yaml that gets created by the last command. We will need to add longhorn support.

Apply the config to the controlplanes.

Bootstrap the cluster. This will initialize etcd.

Generate the k8s config file

Either you can copy the config to ~/.kube/config or export as an environment variable. Lets confirm
the cluster is alive and we can talk to the API servers via HA proxy.

talosctl gen config koryscluster https://<haproxy IP>:6443

 kubelet:
 extraMounts:
 - destination: /var/lib/longhorn
 type: bind
 source: /var/lib/longhorn
 options:
 - bind
 - rshared
 - rw

talosctl apply-config --insecure -n <IP ctl-1> --file controlplane.yaml
talosctl apply-config --insecure -n <IP ctl-2> --file controlplane.yaml
talosctl apply-config --insecure -n <IP ctl-3> --file controlplane.yaml

talosctl bootstrap -n <IP ctl-1> -e <IP ctl-1> --talosconfig=./talosconfig

talosctl kubeconfig ./kube -n <IP ctl-1> -e <IP ctl-1> --talosconfig=./talosconfig

kubectl get nodes

After this is successful, we can get the workers setup. These will hold our longhorn data. Let add
more space to these and we will need to have talos upgrade the config to add iscsi support.

Lets start the upgrade process. We can use image factory to setup a new config. The hash needed
for longhorn support is already setup with the following. Note the version number must be greater
than or equal to the current talos version installed on the node.

We now have a working cluster. Nothing besides the core k8s system is installed. We can refer to
the Kubernetes section to continue setup.

talosctl apply-config --insecure -n <IP worker-1> --file worker.yaml
talosctl apply-config --insecure -n <IP worker-2> --file worker.yaml
talosctl apply-config --insecure -n <IP worker-3> --file worker.yaml

talosctl upgrade --talosconfig=./talosconfig --nodes <IP worker-1> -e <IP worker-1> --image
factory.talos.dev/installer/613e1592b2da41ae5e265e8789429f22e121aab91cb4deb6bc3c0b6262961245:v1.9.1
talosctl upgrade --talosconfig=./talosconfig --nodes <IP worker-2> -e <IP worker-2> --image
factory.talos.dev/installer/613e1592b2da41ae5e265e8789429f22e121aab91cb4deb6bc3c0b6262961245:v1.9.1
talosctl upgrade --talosconfig=./talosconfig --nodes <IP worker-3> -e <IP worker-3> --image
factory.talos.dev/installer/613e1592b2da41ae5e265e8789429f22e121aab91cb4deb6bc3c0b6262961245:v1.9.1

How to scale down a Talos
cluster
To remove nodes from a Talos Linux cluster:

talosctl -n <IP.of.node.to.remove> reset

kubectl delete node <nodename>

Node setup with Nvidia GPU
Introduction
Refer to the previous page for the general concept of Talos worker.yaml. This will build on the
same concept but add required extensions and load modules needed for pods to see a GPU and
use it for AI workloads. This guide will reference this documentation.

Image Factory
First, we need to create the new image that will be loaded on the node. We have the option to
choose from open-source Nvidia drivers to the proprietary version. The following are the extensions
you need to search for, depending on your choice. You will notice they have a lts and production
version. I have been using LTS. The main item to note is that they should match. Meaning if you
choose LTS chose this for both options.

Open source extensions

nvidia-open-gpu-kernel-modules
nvidia-container-toolkit

Proprietary extensions

nonfree-kmod-nvidia
nvidia-container-toolkit

Provision node
Now that we have the image file, we can add this to our worker.yaml, as seen on the previous
page. This should look similar to the following under install.

machine:
 install:
 disk: /dev/nvme0n1 # The disk used for installations.

https://www.talos.dev/v1.9/talos-guides/configuration/nvidia-gpu-proprietary/
https://factory.talos.dev

Depending on the node type (virtual/physical), we need to boot the new node from the iso or image
that came out of our image factory process. After the node is booted and ready to accept
configuration, let's tell it to install these extensions and join our cluster.

After the node reboots, we can verify the extensions are installed by running the following

The output should look similar to the following

Patch node
Now we need to patch the node to load the nvidia modules. Create a patch-gpu.yaml.

Apply the patch with the following.

 image:
factory.talos.dev/installer/53b5a3efb4cca0300d7947f45577df156effe1be2f373daf3ffd8d7ba08ea899:v1.9.5
 wipe: false

talosctl apply-config --insecure -n <new node IP> --file worker.yaml

talosctl get extensions

NODE NAMESPACE TYPE ID VERSION NAME VERSION
192.168.249.11 runtime ExtensionStatus 0 1 iscsi-tools v0.1.6
192.168.249.11 runtime ExtensionStatus 1 1 nonfree-kmod-nvidia-lts 535.216.03-v1.9.1
192.168.249.11 runtime ExtensionStatus 2 1 nvidia-container-toolkit-lts 535.216.03-v1.17.2
192.168.249.11 runtime ExtensionStatus 3 1 schematic
4ba64c429e0aa252d716a668cf66b056b6ee3805f0ee0d7258a3a71e81df8e50
192.168.249.11 runtime ExtensionStatus modules.dep 1 modules.dep 6.12.6-talos

machine:
 kernel:
 modules:
 - name: nvidia
 - name: nvidia_uvm
 - name: nvidia_drm
 - name: nvidia_modeset
 sysctls:
 net.core.bpf_jit_harden: 1

talosctl patch mc --patch @patch-gpu.yaml

Confirm the patch with the following commands.

Patch runtime
We need to set Nvidia as the default runtime. This can be done with a YAML inside of k8s, but I
found the best way is to apply this to the node. I don't know why this is required, but pods would
not see the GPU or even run nvidia-smi without this

create a file runtime-patch.yaml

Nvidia device plugin
We can use Helm to install the device plugin. This runs a daemonset looking for nodes with a GPU.
It will only run on those nodes.

talosctl read /proc/driver/nvidia/version

NVRM version: NVIDIA UNIX x86_64 Kernel Module 535.216.03 Fri Oct 25 22:43:06 UTC 2024
GCC version: gcc version 14.2.0 (GCC)

talosctl read /proc/modules

nvidia_uvm 1908736 0 - Live 0xffffffffc4175000 (PO)
nvidia_drm 94208 0 - Live 0xffffffffc0575000 (PO)
nvidia_modeset 1531904 2 nvidia_drm, Live 0xffffffffc4356000 (PO)
nvidia 62771200 19 nvidia_uvm,nvidia_modeset, Live 0xffffffffc0596000 (PO)

- op: add
 path: /machine/files
 value:
 - content: |
 [plugins]
 [plugins."io.containerd.cri.v1.runtime"]
 [plugins."io.containerd.cri.v1.runtime".containerd]
 default_runtime_name = "nvidia"
 path: /etc/cri/conf.d/20-customization.part
 op: create

talosctl patch mc --patch @runtime-patch.yaml

Create the config file time-slicing-config.yaml

Now, we can pass the config file to helm and install the device plugin.

Testing
Let us run this pod to test if the GPU is picked up correctly.

Time slicing is not enabled by default. This means one GPU can only be used by one pod.The
following configuration will enable one GPU to share time with many pods at once.

version: v1
flags:
 migStrategy: none
sharing:
 timeSlicing:
 resources:
 - name: nvidia.com/gpu
 replicas: 5

helm repo add nvdp https://nvidia.github.io/k8s-device-plugin
helm repo update
helm install nvidia-device-plugin nvdp/nvidia-device-plugin --version=0.13.0 --set=runtimeClassName=nvidia \
--set-file config.map.config=./time-slicing-config.yaml \
--namespace nvidia-system

apiVersion: v1
kind: Pod
metadata:
 name: gpu-pod
spec:
 restartPolicy: Never
 containers:
 - name: cuda-container
 image: nvcr.io/nvidia/k8s/cuda-sample:devicequery-cuda11.7.1-ubuntu20.04
 resources:
 limits:
 nvidia.com/gpu: 1 # requesting 1 GPU
 tolerations:

 - key: nvidia.com/gpu
 operator: Exists
 effect: NoSchedule

Switch CNI
Flannel to Calico

Introduction
When I first provided my Talos cluster, I didn't realize it comes with Flannel as the default CNI. At
first, this wasn't a problem, but as I mature using Kubernetes, I quickly found I need more
advanced network policies. These are the steps I took to convert a live cluster from Flannel to
Calico with no downtime.

Preperation
Since this is a big move and a lot can go wrong, I went through several steps to ensure uptime.

1. Set up a test cluster to mirror your current setup. All the actions we are going to take can
first be done there to ensure nothing pops up during conversion.

2. Snapshot all controllers (if possible) or do a backup of etcd

Convert the cluster
The steps are straightforward, and thankfully, Kubernetes is very good at extensibility, so adding
dual CNI providers does not break networking.

First, let's create our namespace and set the proper permissions needed by Calico

Next, we will use Helm to install the provider. This can be done with regular manifests, but it will be
easier to maintain and upgrade in the future with Helm. You may need to update the version.

kubectl create namespace tigera-operator
kubectl label namespace tigera-operator pod-security.kubernetes.io/enforce=privileged

helm install calico projectcalico/tigera-operator --version v3.29.3 --namespace tigera-operator

After some time, we can check to make sure that all pods are running and ready! This took a bit to
finish so make sure its done before moving on.

Once that is complete, we can edit the default IP pool used by Calico. This is optional, just note the
default is 192.168.0.0/16, which was not ideal for my network. Change the cidr field to what you
require.

The cluster should be in a stable state at this point. You will begin to see new pods with the
updated IP range. The nodes may also have a secondary IP. This is ok. Now we can patch the
controller nodes to remove the Flannel manifest.

kubectl get pods -n calico-system

apiVersion: crd.projectcalico.org/v1
kind: IPPool
metadata:
 name: default-ipv4-ippool
spec:
 allowedUses:
 - Workload
 - Tunnel
 blockSize: 26
 cidr: 10.225.0.0/16
 ipipMode: Always
 natOutgoing: true
 nodeSelector: all()
 vxlanMode: Never

kubectl delete ippools.crd.projectcalico.org default-ipv4-ippool
kubectl apply -f ippool.yaml

cluster:
 network:
 cni:
 name: none
 proxy:
 disabled: true

talosctl patch mc --patch @cnipatch.yaml

Perform this step on all controllers. Then we can verify it worked by querying Talos controllers for
their built-in manifest files. We do not want to see Flannel list anywhere.

Sample output:

The final step is to remove the flannel daemonset and configmap

Conclusion
You may notice that some pods still have the old cidr range. This is mostly okay. I found that
networking for the most part still works. Its best to go through the namespaces and do a rollout
restart on the various resources and they will pick up the new networking rules.

talosctl get manifests -n <controller-ip>

NODE NAMESPACE TYPE ID VERSION
192.168.249.4 controlplane Manifest 00-kubelet-bootstrapping-token 1
192.168.249.4 controlplane Manifest 01-csr-approver-role-binding 1
192.168.249.4 controlplane Manifest 01-csr-node-bootstrap 1
192.168.249.4 controlplane Manifest 01-csr-renewal-role-binding 1
192.168.249.4 controlplane Manifest 11-core-dns 1
192.168.249.4 controlplane Manifest 11-core-dns-svc 1
192.168.249.4 controlplane Manifest 11-kube-config-in-cluster 1

kubectl delete daemonset -n kube-system kube-flannel
kubectl delete cm kube-flannel-cfg -n kube-system

