
Node setup with Nvidia GPU

Introduction
Refer to the previous page for the general concept of Talos worker.yaml. This will build on the
same concept but add required extensions and load modules needed for pods to see a GPU and
use it for AI workloads. This guide will reference this documentation.

Image Factory
First, we need to create the new image that will be loaded on the node. We have the option to
choose from open-source Nvidia drivers to the proprietary version. The following are the extensions
you need to search for, depending on your choice. You will notice they have a lts and production
version. I have been using LTS. The main item to note is that they should match. Meaning if you
choose LTS chose this for both options.

Open source extensions

nvidia-open-gpu-kernel-modules
nvidia-container-toolkit

Proprietary extensions

nonfree-kmod-nvidia
nvidia-container-toolkit

Provision node
Now that we have the image file, we can add this to our worker.yaml, as seen on the previous
page. This should look similar to the following under install.

machine:
 install:
 disk: /dev/nvme0n1 # The disk used for installations.

https://www.talos.dev/v1.9/talos-guides/configuration/nvidia-gpu-proprietary/
https://factory.talos.dev

Depending on the node type (virtual/physical), we need to boot the new node from the iso or image
that came out of our image factory process. After the node is booted and ready to accept
configuration, let's tell it to install these extensions and join our cluster.

After the node reboots, we can verify the extensions are installed by running the following

The output should look similar to the following

Patch node
Now we need to patch the node to load the nvidia modules. Create a patch-gpu.yaml.

Apply the patch with the following.

 image:
factory.talos.dev/installer/53b5a3efb4cca0300d7947f45577df156effe1be2f373daf3ffd8d7ba08ea899:v1.9.5
 wipe: false

talosctl apply-config --insecure -n <new node IP> --file worker.yaml

talosctl get extensions

NODE NAMESPACE TYPE ID VERSION NAME VERSION
192.168.249.11 runtime ExtensionStatus 0 1 iscsi-tools v0.1.6
192.168.249.11 runtime ExtensionStatus 1 1 nonfree-kmod-nvidia-lts 535.216.03-v1.9.1
192.168.249.11 runtime ExtensionStatus 2 1 nvidia-container-toolkit-lts 535.216.03-v1.17.2
192.168.249.11 runtime ExtensionStatus 3 1 schematic
4ba64c429e0aa252d716a668cf66b056b6ee3805f0ee0d7258a3a71e81df8e50
192.168.249.11 runtime ExtensionStatus modules.dep 1 modules.dep 6.12.6-talos

machine:
 kernel:
 modules:
 - name: nvidia
 - name: nvidia_uvm
 - name: nvidia_drm
 - name: nvidia_modeset
 sysctls:
 net.core.bpf_jit_harden: 1

talosctl patch mc --patch @patch-gpu.yaml

Confirm the patch with the following commands.

Patch runtime
We need to set Nvidia as the default runtime. This can be done with a YAML inside of k8s, but I
found the best way is to apply this to the node. I don't know why this is required, but pods would
not see the GPU or even run nvidia-smi without this

create a file runtime-patch.yaml

Nvidia device plugin
We can use Helm to install the device plugin. This runs a daemonset looking for nodes with a GPU.
It will only run on those nodes.

talosctl read /proc/driver/nvidia/version

NVRM version: NVIDIA UNIX x86_64 Kernel Module 535.216.03 Fri Oct 25 22:43:06 UTC 2024
GCC version: gcc version 14.2.0 (GCC)

talosctl read /proc/modules

nvidia_uvm 1908736 0 - Live 0xffffffffc4175000 (PO)
nvidia_drm 94208 0 - Live 0xffffffffc0575000 (PO)
nvidia_modeset 1531904 2 nvidia_drm, Live 0xffffffffc4356000 (PO)
nvidia 62771200 19 nvidia_uvm,nvidia_modeset, Live 0xffffffffc0596000 (PO)

- op: add
 path: /machine/files
 value:
 - content: |
 [plugins]
 [plugins."io.containerd.cri.v1.runtime"]
 [plugins."io.containerd.cri.v1.runtime".containerd]
 default_runtime_name = "nvidia"
 path: /etc/cri/conf.d/20-customization.part
 op: create

talosctl patch mc --patch @runtime-patch.yaml

Create the config file time-slicing-config.yaml

Now, we can pass the config file to helm and install the device plugin.

Testing
Let us run this pod to test if the GPU is picked up correctly.

Time slicing is not enabled by default. This means one GPU can only be used by one pod.The
following configuration will enable one GPU to share time with many pods at once.

version: v1
flags:
 migStrategy: none
sharing:
 timeSlicing:
 resources:
 - name: nvidia.com/gpu
 replicas: 5

helm repo add nvdp https://nvidia.github.io/k8s-device-plugin
helm repo update
helm install nvidia-device-plugin nvdp/nvidia-device-plugin --version=0.13.0 --set=runtimeClassName=nvidia \
--set-file config.map.config=./time-slicing-config.yaml \
--namespace nvidia-system

apiVersion: v1
kind: Pod
metadata:
 name: gpu-pod
spec:
 restartPolicy: Never
 containers:
 - name: cuda-container
 image: nvcr.io/nvidia/k8s/cuda-sample:devicequery-cuda11.7.1-ubuntu20.04
 resources:
 limits:
 nvidia.com/gpu: 1 # requesting 1 GPU
 tolerations:

 - key: nvidia.com/gpu
 operator: Exists
 effect: NoSchedule

Revision #4
Created 25 March 2025 22:20:03 by Kory
Updated 29 March 2025 15:58:21 by Kory

