
Switch CNI

Flannel to Calico

Introduction
When I first provided my Talos cluster, I didn't realize it comes with Flannel as the default CNI. At
first, this wasn't a problem, but as I mature using Kubernetes, I quickly found I need more
advanced network policies. These are the steps I took to convert a live cluster from Flannel to
Calico with no downtime.

Preperation
Since this is a big move and a lot can go wrong, I went through several steps to ensure uptime.

1. Set up a test cluster to mirror your current setup. All the actions we are going to take can
first be done there to ensure nothing pops up during conversion.

2. Snapshot all controllers (if possible) or do a backup of etcd

Convert the cluster
The steps are straightforward, and thankfully, Kubernetes is very good at extensibility, so adding
dual CNI providers does not break networking.

First, let's create our namespace and set the proper permissions needed by Calico

Next, we will use Helm to install the provider. This can be done with regular manifests, but it will be
easier to maintain and upgrade in the future with Helm. You may need to update the version.

kubectl create namespace tigera-operator
kubectl label namespace tigera-operator pod-security.kubernetes.io/enforce=privileged

helm install calico projectcalico/tigera-operator --version v3.29.3 --namespace tigera-operator

After some time, we can check to make sure that all pods are running and ready! This took a bit to
finish so make sure its done before moving on.

Once that is complete, we can edit the default IP pool used by Calico. This is optional, just note the
default is 192.168.0.0/16, which was not ideal for my network. Change the cidr field to what you
require.

The cluster should be in a stable state at this point. You will begin to see new pods with the
updated IP range. The nodes may also have a secondary IP. This is ok. Now we can patch the
controller nodes to remove the Flannel manifest.

kubectl get pods -n calico-system

apiVersion: crd.projectcalico.org/v1
kind: IPPool
metadata:
 name: default-ipv4-ippool
spec:
 allowedUses:
 - Workload
 - Tunnel
 blockSize: 26
 cidr: 10.225.0.0/16
 ipipMode: Always
 natOutgoing: true
 nodeSelector: all()
 vxlanMode: Never

kubectl delete ippools.crd.projectcalico.org default-ipv4-ippool
kubectl apply -f ippool.yaml

cluster:
 network:
 cni:
 name: none
 proxy:
 disabled: true

talosctl patch mc --patch @cnipatch.yaml

Perform this step on all controllers. Then we can verify it worked by querying Talos controllers for
their built-in manifest files. We do not want to see Flannel list anywhere.

Sample output:

The final step is to remove the flannel daemonset and configmap

Conclusion
You may notice that some pods still have the old cidr range. This is mostly okay. I found that
networking for the most part still works. Its best to go through the namespaces and do a rollout
restart on the various resources and they will pick up the new networking rules.

talosctl get manifests -n <controller-ip>

NODE NAMESPACE TYPE ID VERSION
192.168.249.4 controlplane Manifest 00-kubelet-bootstrapping-token 1
192.168.249.4 controlplane Manifest 01-csr-approver-role-binding 1
192.168.249.4 controlplane Manifest 01-csr-node-bootstrap 1
192.168.249.4 controlplane Manifest 01-csr-renewal-role-binding 1
192.168.249.4 controlplane Manifest 11-core-dns 1
192.168.249.4 controlplane Manifest 11-core-dns-svc 1
192.168.249.4 controlplane Manifest 11-kube-config-in-cluster 1

kubectl delete daemonset -n kube-system kube-flannel
kubectl delete cm kube-flannel-cfg -n kube-system

Revision #1
Created 2 May 2025 21:23:08 by Kory
Updated 2 May 2025 21:48:04 by Kory

